skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaur, Aishvaryadeep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The 9‐borataphenanthrene anion is easily accessed by deprotonation of a 9,10‐dihydro‐9‐boraphenanthrene and its diverse reactivity is investigated. Alkylation occurs at the carbon atom adjacent to boron, and room temperature hydroboration occurs across the B=C bond. The π‐manifold of the central BC5ring coordinates to chromium in an η6fashion while only the B=C unit binds η2to gold, indicating versatility of the 9‐borataphenanthrene anion as a ligand. Supporting calculations rationalize the reactivity and aromaticity is corroborated by nucleus‐independent chemical shift (NICS) indices. 
    more » « less
  2. Abstract Borepin, a 7‐membered boron‐containing heterocycle, has become an emerging molecular platform for the development of new materials and optoelectronics. While electron‐deficient borepins are well‐established, reduced electron‐rich species have remained elusive. Herein we report the first isolable, crystalline borepin radical (2 a,2 b) and anion (3 a,3 b) complexes, which have been synthesized by potassium graphite (KC8) reduction of cyclic(alkyl)(amino) carbene‐dibenzo[b,d]borepin precursors. Borepin radicals and anions have been characterized by EPR or NMR, elemental analysis, X‐ray crystallography, and cyclic voltammetry. In addition, the bonding features have been investigated computationally using density functional theory. 
    more » « less